Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms
نویسندگان
چکیده
منابع مشابه
Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms
Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly alg...
متن کاملShort Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression
The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...
متن کاملElectricity Peak Load Forecasting with Self-Organizing Map and Support Vector Regression
This paper aims to study the short-term Peak Load Forecasting (PLF) by using Kohonen Self-Organizing Map (SOM) and Support Vector Regression (SVR). We first adopt a SOM network to cluster the input data set into several subsets in an unsupervised learning strategy. Then, several SVRs for the next day’s peak load are used to fit the training data of each subset in the second stage. In the numeri...
متن کاملA Short Term Load Forecasting Model Using Core Vector Regression Optimized by Memetic Algorithm
In this paper, a new model, core vector regression (CVR) optimized by memetic algorithm (MA), is presented to predict electric daily load. Support vector regression (SVR) has obtained wide focus in recent years to solve nonlinear regression problems in many fields. However, it is limited on large scale dataset problem because of its high time and space complexity. Hence, CVR is proposed to impr...
متن کاملComprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression
Background: Short-term load forecasting is an important issue that has been widely explored and examined with respect to the operation of power systems and commercial transactions in electricity markets. Of the existing forecasting models, support vector regression (SVR) has attracted much attention. While model selection, including feature selection and parameter optimization, plays an importa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2013
ISSN: 1537-744X
DOI: 10.1155/2013/292575